
Multiplier Effect: Case
Studies in Distributions for
Publishers
Jon Peck | Courtney Yuskis | #drupalcorn 2016.08.05

Jon Peck

Architect, Four Kitchens

fourkitchens.com
@fluxsauce
linkedin.com/in/jonpeck

https://fourkitchens.com/
https://fourkitchens.com/
https://twitter.com/fluxsauce
https://twitter.com/fluxsauce
https://www.linkedin.com/in/jonpeck
https://www.linkedin.com/in/jonpeck

Courtney Yuskis

Digital Engagement Director,
Meredith Agrimedia

meredithagrimedia.com
linkedin.com/in/courtneyyuskis

http://www.meredithagrimedia.com/
http://www.meredithagrimedia.com/
https://www.linkedin.com/in/courtneyyuskis
https://www.linkedin.com/in/courtneyyuskis

What’s a
Distribution?

What is a Drupal Distribution?

● Officially: full copy of core with additional software
○ https://www.drupal.org/documentation/build/distributions

● Practically: framework of dependencies and custom code

https://www.drupal.org/documentation/build/distributions
https://www.drupal.org/documentation/build/distributions

Installation Profiles and Distributions

● Installation Profiles configure Drupal
○ Provides installation, configuration steps

● Distributions contain all software
○ Typically includes at least one Installation Profile

● “More details about distributions” - drupal.org
○ https://www.drupal.org/node/1089736#distributions-vs-installation-profiles

https://www.drupal.org/node/1089736#distributions-vs-installation-profiles
https://www.drupal.org/node/1089736#distributions-vs-installation-profiles

Why Not Multisite?

● Fragile, difficult to maintain, doesn’t scale
● Candidate for deprecation in Drupal 8, removal in Drupal 9

○ https://www.drupal.org/node/2306013

● “Much Ado about Drupal Multisite” - Josh Koenig
○ https://pantheon.io/blog/drupal-multisite-much-ado-about-drupal-multisite

https://www.drupal.org/node/2306013
https://www.drupal.org/node/2306013
https://pantheon.io/blog/drupal-multisite-much-ado-about-drupal-multisite
https://pantheon.io/blog/drupal-multisite-much-ado-about-drupal-multisite

Types of
Distributions

● Monolithic
● Atomic
● Hybrid

Monolithic Distributions

● All code in the same repository
● Advantages

○ Easy to distribute and start working
○ Everything in the same place

● Disadvantages
○ Nigh-impossible to code review
○ Magnificently bloated
○ Messy history
○ Mirroring repositories
○ Patching nightmare 2001: A Space Odyssey (1968), Metro-Goldwyn-Mayer

● Converts source files into standalone artifacts
○ Contains everything needed to run

● Monolithic Distributions are artifacts

Build Process

Steps in a Build

● Download packages and apply patches
○ Drush Make (Drupal 7 and below)
○ Composer (Drupal 8 and above)
○ NPM (JavaScript)

● Compile assets
○ Ex: SCSS to CSS, JavaScript minification, image reduction

● Package for deployment
○ Add to Source Control
○ Copy or Archive

Build Systems

● Aquifer
○ https://github.com/aquifer/aquifer

● BLT
○ https://github.com/acquia/blt

● Grunt Drupal Tasks
○ https://github.com/phase2/grunt-drupal-tasks

https://github.com/aquifer/aquifer
https://github.com/aquifer/aquifer
https://github.com/acquia/blt
https://github.com/acquia/blt
https://github.com/phase2/grunt-drupal-tasks
https://github.com/phase2/grunt-drupal-tasks

● Build process to get components
○ Every custom module in its own repository

● Advantages
○ Explicit separation of history
○ Great for versioning

● Disadvantages
○ Dozens or hundreds of repositories
○ Pull requests are a dependency nightmare
○ Need to maintain build process
○ Slow builds
○ Impractical

Atomic Distributions

It Came from Beneath the Sea (1995), Columbia Pictures

Hybrid Distributions

● Build process to get components
○ Custom code in Distribution repository

● Advantages
○ Centralized code
○ Easy to work with
○ Faster builds

● Disadvantages
○ Still many dependencies
○ Still needs a build process

The Fly (1958), 20th Century Fox

Case Study:
Meredith
Agrimedia

Scope

Agriculture.com

● Online presence for Successful Farming
● Ag news and commodities data
● Reuters Newswire
● >25,000 pieces of content
● Migration from Symfony 1.4 framework

WOODMagazine.com

● Online presence for WOOD Magazine
● Free downloadable plans
● Print article index
● 4,050 pieces of content
● Migration from Teamsite Interwoven

http://www.agriculture.com
http://www.agriculture.com
http://www.agriculture.com
http://www.woodmagazine.com/
http://www.woodmagazine.com/
http://www.woodmagazine.com/

Commonalities: Launch Objectives

● Improve editorial efficiency
● Ease of testing new revenue models
● Exceptional UX (content -> audience -> data)
● Audience acquisition and engagement
● Maintain brand reputation

Commonalities: Technical Details

● Content structure and hierarchy
○ Articles, Images, Slideshows, Authorship, Taxonomies

● Publishing workflow
● In-house integrations

○ Single Sign-On, subscription management
○ Meredith standard analytics
○ RAMP Video

● Platform
○ Hosting, CDN and proxy
○ Memcache, Solr

○ Gigya
○ KARMA
○ Lithium

Challenges

● Partial institutional adoption of Drupal, but no standard
● Disproportionate budget across two properties, but need to deliver

complete solution for both
● Multiple client-side product owners
● IT policies and procedures
● 3rd party integrations differ by site

● Distribution (Parent):
ag-distro

○ Fork: sfg
○ Fork: wdm

● Changes in parent pulled
asynchronously

Testing

● Every code change is automatically checked
● Tools

○ Syntax Errors - phplint
○ Coding Standards - PHP_CodeSniffer / Coder, ESLint
○ Functional Testing - Behat / Mink, Behat Drupal Extension

https://www.npmjs.com/package/phplint
https://github.com/squizlabs/PHP_CodeSniffer
https://www.drupal.org/project/coder
http://eslint.org/
http://docs.behat.org/en/v3.0/
https://github.com/jhedstrom/drupalextension

● Standardized approach, platform agnostic
● Drupal VM

○ Not required, but only supported
○ One configuration step

■ Since launch, down to zero (!)
○ Internal hosting leveraged playbooks for consistency

● EditorConfig - file format & text editor plugin for maintaining coding styles

Local Development

https://www.drupalvm.com/
https://www.drupalvm.com/
http://editorconfig.org/
http://editorconfig.org/

● Aquifer - build system
● Composer - PHP package manager
● NPM - JavaScript package manager

○ Gulp - task runner, front end build system

● CircleCI - continuous integration
● Jenkins - deployment

Build Process

http://aquifer.io/
http://aquifer.io/
https://getcomposer.org/
https://getcomposer.org/
https://www.npmjs.com/
https://www.npmjs.com/
http://gulpjs.com/
http://gulpjs.com/
https://circleci.com/
https://circleci.com/
https://jenkins.io/
https://jenkins.io/

Distribution Directory Layout

● /post-provision/ - Drupal VM custom
● /profiles/

● /provisioning/ - Drupal VM
● /root/ - .htaccess
● /scripts/ - bash utilities
● /settings/

● /tests/ - Behat
● /themes/

● /build/ - working directory
● /circle/ - CircleCI configuration
● /docs/ - markdown
● /drush/ - aliases, drushrc
● /files/ - Site files; preserved
● /gulp-tasks/

● /modules/

● /patches/

Result

● Agriculture.com (1st site): TTL 6 Months
● WoodMagazine.com (2nd site): TTL 5 weeks
● Cost effective and simple to maintain

○ Common changes can be tested and deployed in minutes
○ Structure, tools and techniques are standardized

● Components can be reused within organization
● Quickly identify gaps, redundancies, and opportunities

Client Feedback

● Continued use of train-the-trainer, across sites
● Removed content distribution bottlenecks
● Repurposing/surfacing evergreen content
● Enhanced content automation and distribution
● Content and channel agnostic
● Eliminated advertising discrepancies

By the Numbers

● 43% to 92%: Sitewide viewability (advertising performance)
● 67% decrease in page load times
● 44% increase in exposure to sub-brands
● 88% on-page scroll rate

● Stabilize build process earlier in project
● Use a single Continuous Integration / Deployment solution
● Install Drupal VM with Composer
● Bare metal test Drupal VM when updating
● Bare metal test documentation prior to new developer onboarding
● Retroactively apply fixes based on deployment of subsequent sites
● Say No

What would we do differently?

Practical
Takeaways

● Own the global project
● Identify commonalities
● Mitigate differences

Client-side Champion

Drupal Builds are the Way of the Future*

● Great for large projects
● Can be a bit overkill for small projects

● *Use your best judgement

Hybrid Distributions are Optimal

● Consolidate custom work
● Separate contributed code
● Extremists in any context are unpleasant

Automate Quality Checks

● Syntax errors
● Coding standards
● Behavioral testing
● Prevent regressions

● Investigate and leverage
open-source first
○ Contribute back fixes,

improvements

● Avoid one-off solutions if
practical

● Reusability is
awesome
(compromise!)

Don’t Reinvent the Wheel

https://xkcd.com/927/

https://xkcd.com/927/
https://xkcd.com/927/

A Case for Open Source

● Abstraction makes it easy
● Promotes collaboration

○ Within community
○ Within organizations

● Get permission first

Any questions?

Thank you.

linkedin.com/in/jonpeck
linkedin.com/in/courtneyyuskis
@fourkitchens

https://www.linkedin.com/in/jonpeck
https://www.linkedin.com/in/jonpeck
https://www.linkedin.com/in/courtneyyuskis
https://www.linkedin.com/in/courtneyyuskis
https://twitter.com/fourkitchens
https://twitter.com/fourkitchens

